四年級數(shù)學(xué)下冊知識點 天天熱議
人教版四年級數(shù)學(xué)下冊知識點匯總
小學(xué)數(shù)學(xué)的學(xué)習(xí)需要不斷的積累和創(chuàng)新,最重要的就是及時進行知識點的鞏固和復(fù)習(xí),人教版四年級數(shù)學(xué)下冊知識點就是應(yīng)屆畢業(yè)生小編為大家準備的人教版四年級數(shù)學(xué)下冊知識點,希望可以幫助到大家!
(相關(guān)資料圖)
四年級數(shù)學(xué)下冊知識點1
第一單元知識點(四則運算)
1. 在沒有括號的算式里,如果只有加、減法或者只有乘除法,都要從左往右按順序計算。(這是同級運算)
2. 在沒有括號的算式里,有乘、除法和加減法,要先算乘除法,在算加減法。(這是兩級運算)
3. 算式里有括號,先算括號里面的,在算括號外面的。
4. 加法、減法、乘法和除法統(tǒng)稱四則運算。
5. 一個數(shù)加上0還得原數(shù),一個數(shù)減去0也得原數(shù)。
6. 被減數(shù)等于減數(shù),差是0。
7. 一個數(shù)和零相乘,仍得0。
8. 0除以一個非0的數(shù),還得0。
9. 0不能作除數(shù)。
10. 在解決問題時,如果列綜合算式,必須用脫式計算。
11. 任何數(shù)除以0都得0。(×)因為0不能做除數(shù)。
第二單元知識點(觀察物體)
1. 如何確定物體所在的位置?
(1)明確方向。
(2)明確距離。
2.根據(jù)方向和距離來確定物體的位置。
3.在生活中一般先說物體所在方向離的近(夾角較小)的方位。
4.平面圖形的一般畫法:
(1)先確定某建筑物的方向。
(2)再確定角度。(測量角度時,哪個方位在前,0刻度線就對準誰。)
(3)最后確定距離。
5.兩個城市的位置具有相對性,方向相對,角度和距離不發(fā)生改變。例如:甲地在乙地的南偏東30度500米處,則乙地在甲地的北偏西30度500米處。
第三單元知識點(運算定律)
1.兩個數(shù)相加,兩個加數(shù)交換位置,和不變。這叫做加法交換律。
用字母表示為:a+b=b+a
2.三個數(shù)相加,先把前兩個數(shù)相加,再加第三個數(shù),或者先把后兩個數(shù)相加,再加第一個數(shù),和不變。這叫做加法結(jié)合律。用字母表示為:(a+b)+c=a+(b+c)
3.兩個數(shù)相乘,交換兩個因數(shù)的位置,積不變。這叫做乘法交換律。
用字母表示為:a×b=b×a
4.三個數(shù)相乘,先讓前兩個數(shù)相乘,再乘第三個數(shù),或者先讓后兩個數(shù)相乘,再乘第一個數(shù),積不變。這叫做乘法結(jié)合律。
用字母表示為:(a×b) ×c=a×(b×c)
5.兩個數(shù)的和與一個數(shù)相乘,可以先把它們與這個數(shù)分別相乘,再相加。這叫做乘法分配律。用字母表示為:(a+b)×c=a×c+b×c
6. 類似于乘法分配律的簡便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.從一個數(shù)里連續(xù)減去兩個數(shù),等于從這個數(shù)里減去另兩個數(shù)的和。這叫做減法的運算性質(zhì)。用字母表示為:a-b-c=a-(b+c)
8.在一個帶有括號的算式中,括號前面是“+”,去掉括號后,括號里面的運算符號不發(fā)生改變。用字母表示為:a+(b+c)=a+b+c a+(b-c)=a+b-c
括號前面是“-”,去掉括號后,括號里面的運算符號發(fā)生了變化,“+”變“-”, “-”變“+”。 用字母表示為:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一個數(shù)連續(xù)除以兩個數(shù),等于這個數(shù)除以另兩個數(shù)的積。這時除法的運算性質(zhì)。用字母表示為:a÷b÷c=a÷(b×c)
10. 在一個帶有括號的算式中,括號前面是“×”,去掉括號后,括號里面的運算符號不發(fā)生改變。用字母表示為:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括號前面是“÷”,去掉括號后,括號里面的運算符號發(fā)生了改變。用字母表示為:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另兩種簡便方法:
(1) 把一個因數(shù)改寫成兩個一位數(shù)相乘的形式。
(2) 把一個因數(shù)改寫成兩個數(shù)相除的形式,然后變成乘除混和運算。
四年級數(shù)學(xué)下冊知識點2
運算定律及簡便運算
一、加法運算定律:
1、加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。a+b=b+a
2、加法結(jié)合律:三個數(shù)相加,可以先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再加上第一個數(shù),和不變。(a+b)+c=a+b+c
加法的這兩個定律往往結(jié)合起來一起使用。
如:165+93+35=93+(165+35)依據(jù)是什么?
3、連減的性質(zhì):一個數(shù)連續(xù)減去兩個數(shù),等于這個數(shù)減去那兩個數(shù)的和。a-b-c=a-b+c
二、乘法運算定律:
1、乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積不變。a×b=b×a
2、乘法結(jié)合律:三個數(shù)相乘,可以先把前兩個數(shù)相乘,再乘以第三個數(shù),也可以先把后兩個數(shù)相乘,再乘以第一個數(shù),積不變。(a×b)×c=a×b×c
乘法的這兩個定律往往結(jié)合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以先把這兩個數(shù)分別與這個數(shù)相乘,再把積相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
雞兔問題公式
(1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:
(總腳數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或者是(每只兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當(dāng)雞的總腳數(shù)比兔的總腳數(shù)多時,可用公式
(每只雞腳數(shù)×總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)
或(每只兔腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當(dāng)兔的總腳數(shù)比雞的總腳數(shù)多時,可用公式。
(每只雞的腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的"腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或(每只兔的腳數(shù)×總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1只合格品得分數(shù)×產(chǎn)品總數(shù)-實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。或者是總產(chǎn)品數(shù)-(每只不合格品扣分數(shù)×總產(chǎn)品數(shù)+實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。
例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(“得失問題”也稱“運玻璃器皿問題”,運到完好無損者每只給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。
例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬于假設(shè)問題,假設(shè)的和最后結(jié)果相反。
2、“雞兔同籠”問題的解題方法
假設(shè)法:
①假如都是兔
②假如都是雞
③古人“抬腳法”:
解答思路:
假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數(shù)就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數(shù)÷2-雞兔總數(shù)=兔的只數(shù);
雞兔總數(shù)-兔的只數(shù)=雞的只數(shù)。
四則運算
1、加法、減法、乘法和除法統(tǒng)稱四則運算。
2、在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括號的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括號,要先算括號里面的,再算括號外面的;括號里面的算式計算順序遵循以上的計算順序。
5、先乘除,后加減,有括號,提前算
關(guān)于“0”的運算
1、“0”不能做除數(shù); 字母表示:a÷0錯誤
2、一個數(shù)加上0還得原數(shù); 字母表示:a+0=a
3、一個數(shù)減去0還得原數(shù); 字母表示:a-0=a
4、被減數(shù)等于減數(shù),差是0; 字母表示:a-a=0
5、一個數(shù)和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的數(shù),還得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(無意義)
四年級數(shù)學(xué)下冊知識點3
1.由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2.三角形有3個角、3條邊、3個頂點。
3.從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。
4.為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成三角形ABC。
5.三角形具有穩(wěn)定性。
6.三角形的任意兩邊的和大于第三邊。
7.三角形按角分成:
(1)銳角三角形(三個內(nèi)角都是銳角的三角形)
(2)直角三角形(有一個角是直角的三角形)
(3)鈍角三角形(有一個角是鈍角的三角形)
8.三角形按邊分成:
(1)等腰三角形(有兩條邊相等,相等的兩條邊叫做三角形的腰;有兩個角相等,相等的兩個角叫做底角。)
(2)等邊三角形(三邊相等,三個內(nèi)角相等都是60°)
(3)一般三角形
9.三角形中只能有一個直角;三角形中只能有一個鈍角;
三角形中至少有兩個銳角,最多有三個銳角。
10.三角形的內(nèi)角和是180°。
11.最少用2個相同直角三角形可以拼一個平行四邊形。最少用3個相同等邊三角形可以拼一個梯形。最少用2個相同等邊三角形可以拼一個平行四邊形。最少用2個相同等腰直角三角形可以拼一個正方形。最少用2個相同直角三角形可以拼一個長方形。
12.無論是什么形狀的圖形,沒有重疊,沒有空隙地鋪在平面上,就是密鋪。
數(shù)學(xué)萬級數(shù)的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數(shù)要按個級的讀法來讀,再在后面加上一個“萬”字;
3、每級末位不管有幾個0都不讀,其它數(shù)位有一個0或連續(xù)幾個零都只讀一個“零”。
小學(xué)數(shù)學(xué)必背公式
關(guān)系表達式
1、每份數(shù)×份數(shù)=總數(shù)總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
2、 1倍數(shù)×倍數(shù)=幾倍數(shù)幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)3、速度×?xí)r間=路程路程÷速度=時間路程÷時間=速度
4、單價×數(shù)量=總價總價÷單價=數(shù)量總價÷數(shù)量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數(shù)+加數(shù)=和和-一個加數(shù)=另一個加數(shù)
7、被減數(shù)-減數(shù)=差被減數(shù)-差=減數(shù)差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積積÷一個因數(shù)=另一個因數(shù)
9、被除數(shù)÷除數(shù)=商被除數(shù)÷商=除數(shù)商×除數(shù)=被除數(shù)
單位間進率
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1噸=1000千克1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米1畝=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。