排列組合的經(jīng)典教案-環(huán)球看點(diǎn)
作為一位杰出的教職工,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以更好地組織教學(xué)活動(dòng)。如何把教案做到重點(diǎn)突出呢?下面是小編收集整理的排列組合的經(jīng)典教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
排列組合的經(jīng)典教案 篇1
一、課標(biāo)要求:
(資料圖)
1.分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理
通過實(shí)例,總結(jié)出分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡(jiǎn)單的實(shí)際問題;
2.排列與組合
通過實(shí)例,理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡(jiǎn)單的實(shí)際問題;
3.二項(xiàng)式定理
能用計(jì)數(shù)原理證明二項(xiàng)式定理; 會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡(jiǎn)單問題。
二、命題走向
本部分內(nèi)容主要包括分類計(jì)數(shù)原理、分步計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理三部分;考查內(nèi)容:
(1)兩個(gè)原理;
(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;
(3)二項(xiàng)式定理,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)及二項(xiàng)式系數(shù)和。
排列、組合不僅是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,而且在實(shí)際中有廣泛的應(yīng)用,因此新高考會(huì)有題目涉及;二項(xiàng)式定理是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,也是高考每年必考內(nèi)容,新高考會(huì)繼續(xù)考察。
考察形式:?jiǎn)为?dú)的考題會(huì)以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時(shí)與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目。
三、要點(diǎn)精講
1.排列、組合、二項(xiàng)式知識(shí)相互關(guān)系表
2.兩個(gè)基本原理
(1)分類計(jì)數(shù)原理中的分類;
(2)分步計(jì)數(shù)原理中的分步;
正確地分類與分步是學(xué)好這一章的關(guān)鍵。
3.排列
(1)排列定義,排列數(shù)
(2)排列數(shù)公式:系 = =n·(n-1)…(n-m+1);
(3)全排列列: =n!;
(4)記住下列幾個(gè)階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.組合
(1)組合的定義,排列與組合的區(qū)別;
(2)組合數(shù)公式:Cnm= = ;
(3)組合數(shù)的性質(zhì)
①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二項(xiàng)式定理
(1)二項(xiàng)式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通項(xiàng)公式:二項(xiàng)式展開式中第k+1項(xiàng)的通項(xiàng)公式是:Tk+1=Cnkan-kbk;
6.二項(xiàng)式的應(yīng)用
(1)求某些多項(xiàng)式系數(shù)的和;
(2)證明一些簡(jiǎn)單的組合恒等式;
(3)證明整除性。①求數(shù)的末位;②數(shù)的整除性及求系數(shù);③簡(jiǎn)單多項(xiàng)式的整除問題;
(4)近似計(jì)算。當(dāng)|x|充分小時(shí),我們常用下列公式估計(jì)近似值:
①(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;
(5)證明不等式。
四、典例解析
題型1:計(jì)數(shù)原理
例1.完成下列選擇題與填空題
(1)有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有 種。
A.81 B.64 C.24 D.4
(2)四名學(xué)生爭(zhēng)奪三項(xiàng)冠軍,獲得冠軍的可能的種數(shù)是( )
A.81 B.64 C.24 D.4
(3)有四位學(xué)生參加三項(xiàng)不同的競(jìng)賽,
①每位學(xué)生必須參加一項(xiàng)競(jìng)賽,則有不同的參賽方法有 ;
②每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則有不同的參賽方法有 ;
③每位學(xué)生最多參加一項(xiàng)競(jìng)賽,每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則不同的參賽方法有 。
例2.(06江蘇卷)今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有 種不同的方法(用數(shù)字作答)。
點(diǎn)評(píng):分步計(jì)數(shù)原理與分類計(jì)數(shù)原理是排列組合中解決問題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個(gè)原理,尤其是分類計(jì)數(shù)原理與分類討論有很多相通之處,當(dāng)遇到比較復(fù)雜的問題時(shí),用分類的方法可以有效的將之化簡(jiǎn),達(dá)到求解的目的。
題型2:排列問題
例3.(1)(2008四川理卷13)
展開式中 的系數(shù)為?______ _________。
【點(diǎn)評(píng)】:此題重點(diǎn)考察二項(xiàng)展開式中指定項(xiàng)的系數(shù),以及組合思想;
(2).2008湖南省長(zhǎng)沙云帆實(shí)驗(yàn)學(xué)校理科限時(shí)訓(xùn)練
若 n展開式中含 項(xiàng)的系數(shù)與含 項(xiàng)的系數(shù)之比為-5,則n 等于 ( )
A.4 B.6 C.8 D.10
點(diǎn)評(píng):合理的應(yīng)用排列的公式處理實(shí)際問題,首先應(yīng)該進(jìn)入排列問題的情景,想清楚我處理時(shí)應(yīng)該如何去做。
例4.(1)用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有 個(gè)(用數(shù)字作答);
(2)電視臺(tái)連續(xù)播放6個(gè)廣告,其中含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首尾必須播放公益廣告,則共有 種不同的播放方式(結(jié)果用數(shù)值表示).
點(diǎn)評(píng):排列問題不可能解決所有問題,對(duì)于較復(fù)雜的問題都是以排列公式為輔助。
題型三:組合問題
例5.荊州市2008屆高中畢業(yè)班質(zhì)量檢測(cè)(Ⅱ)
(1)將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中都不能同時(shí)只放入2個(gè)白球和2個(gè)黑球,則所有不同的放法種數(shù)為(C) A.3 B.6 C.12 D.18
(2)將4個(gè)顏色互不相同的球全部放入編號(hào)為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有( )
A.10種 B.20種 C.36種 D.52種
點(diǎn)評(píng):計(jì)數(shù)原理是解決較為復(fù)雜的排列組合問題的基礎(chǔ),應(yīng)用計(jì)數(shù)原理結(jié)合
例6.(1)某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有 種;
(2)5名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法共有( )
(A)150種 (B)180種 (C)200種 (D)280種
點(diǎn)評(píng):排列組合的交叉使用可以處理一些復(fù)雜問題,諸如分組問題等;
題型4:排列、組合的綜合問題
例7.平面上給定10個(gè)點(diǎn),任意三點(diǎn)不共線,由這10個(gè)點(diǎn)確定的直線中,無三條直線交于同一點(diǎn)(除原10點(diǎn)外),無兩條直線互相平行。求:(1)這些直線所交成的點(diǎn)的個(gè)數(shù)(除原10點(diǎn)外)。(2)這些直線交成多少個(gè)三角形。
點(diǎn)評(píng):用排列、組合解決有關(guān)幾何計(jì)算問題,除了應(yīng)用排列、組合的各種方法與對(duì)策之外,還要考慮實(shí)際幾何意義。
例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。
點(diǎn)評(píng):本題是1999年全國(guó)高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯(cuò)誤原因沒有對(duì)c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復(fù)的直線。
題型5:二項(xiàng)式定理
例9.(1)(2008湖北卷)
在 的展開式中, 的冪的指數(shù)是整數(shù)的項(xiàng)共有
A.3項(xiàng) B.4項(xiàng) C.5項(xiàng) D.6項(xiàng)
(2) 的展開式中含x 的正整數(shù)指數(shù)冪的項(xiàng)數(shù)是
(A)0 (B)2 (C)4 (D)6
點(diǎn)評(píng):多項(xiàng)式乘法的進(jìn)位規(guī)則。在求系數(shù)過程中,盡量先化簡(jiǎn),降底數(shù)的運(yùn)算級(jí)別,盡量化成加減運(yùn)算,在運(yùn)算過程可以適當(dāng)注意令值法的運(yùn)用,例如求常數(shù)項(xiàng),可令 .在二項(xiàng)式的展開式中,要注意項(xiàng)的系數(shù)和二項(xiàng)式系數(shù)的區(qū)別。
例10. (2008湖南文13)
記 的展開式中第m項(xiàng)的系數(shù)為 ,若 ,則 =____5______.
題型6:二項(xiàng)式定理的應(yīng)用
例11.(1)求4×6n+5n+1被20除后的余數(shù);
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?
(3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。
點(diǎn)評(píng):(1)用二項(xiàng)式定理來處理余數(shù)問題或整除問題時(shí),通常把底數(shù)適當(dāng)?shù)夭鸪蓛身?xiàng)之和或之差再按二項(xiàng)式定理展開推得所求結(jié)論;
(2)用二項(xiàng)式定理來求近似值,可以根據(jù)不同精確度來確定應(yīng)該取到展開式的第幾項(xiàng)。
五.思維總結(jié)
解排列組合應(yīng)用題的基本規(guī)律
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理使用方法有兩種:①單獨(dú)使用;②聯(lián)合使用。
2.將具體問題抽象為排列問題或組合問題,是解排列組合應(yīng)用題的關(guān)鍵一步。
3.對(duì)于帶限制條件的排列問題,通常從以下三種途徑考慮:
(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;
(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;
(3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。
4.對(duì)解組合問題,應(yīng)注意以下三點(diǎn):
(1)對(duì)“組合數(shù)”恰當(dāng)?shù)姆诸愑?jì)算,是解組合題的常用方法;
(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;
(3)設(shè)計(jì)“分組方案”是解組合題的關(guān)鍵所在。
排列組合的經(jīng)典教案 篇2
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):使學(xué)生通過觀察、操作、實(shí)驗(yàn)等活動(dòng),找出簡(jiǎn)單事物的排列規(guī)律。
2、能力目標(biāo):培養(yǎng)學(xué)生初步的觀察、分析和推理能力及有順序地、全面地思考問題的意識(shí),并通過互相交流,使學(xué)生體會(huì)解決問題策略的多樣性。
3、情感目標(biāo):
①使學(xué)生感受數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,進(jìn)一步體會(huì)數(shù)學(xué)與日常生活的密切聯(lián)系,嘗試用數(shù)學(xué)的方法來解決實(shí)際生活中的問題,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí),并使學(xué)生在數(shù)學(xué)活動(dòng)中養(yǎng)成與人合作的良好習(xí)慣。
②使學(xué)生在探索規(guī)律活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣和信心。
教學(xué)重點(diǎn):找出簡(jiǎn)單排列與組合的規(guī)劃,并能解答簡(jiǎn)單的排列與組合問題。
教學(xué)難點(diǎn):簡(jiǎn)單區(qū)分排列與組合的異同。
教學(xué)準(zhǔn)備:數(shù)字卡片、、衣服圖片、多媒體課件
教學(xué)過程:
一、激趣導(dǎo)入
師:同學(xué)們,今天老師要帶你們到一個(gè)有趣的地方去玩,想去嗎?
板書:數(shù)學(xué)廣角
想去的話,要通過老師的考核才能去的。
猜一猜:我的年齡是由數(shù)字3和5組成的兩位數(shù)。
學(xué)生猜測(cè)并說明理由。
二、探究學(xué)習(xí)
1、3個(gè)數(shù)字可以擺出多少個(gè)不同的兩位數(shù)?
課件出示:猜一猜,我家座機(jī)號(hào)碼是0713-62147()()
先讓學(xué)生猜一猜。
師:你們這樣猜要猜到什么時(shí)候啊?這樣吧,老師再給你提供一些信息:
剩下兩個(gè)數(shù)字是由1、3、8三個(gè)數(shù)字中的兩個(gè)。
(1)擺一擺
用手中的數(shù)字卡片擺一擺,共有幾種可能?
老師給同學(xué)們準(zhǔn)備了三張數(shù)字卡片,請(qǐng)你們動(dòng)手?jǐn)[一擺,同桌合作,一個(gè)人擺數(shù),一個(gè)人記錄。同學(xué)們嘗試拼擺,并且將探究結(jié)果寫出來。
教師巡視,留意學(xué)生的幾種答案:有序的(先確定十位的,先確定個(gè)位的)、無序的、有遺漏的、有重復(fù)的。
(2)說一說
請(qǐng)幾名學(xué)生(有代表性的)匯報(bào)。呈現(xiàn)在黑板
師:哪些是對(duì)的?你喜歡哪一種?為什么?
(如果學(xué)生還是說不出,教師可以引導(dǎo)學(xué)生觀察有序的一種,1在什么位,1在十位的兩位數(shù)能擺幾個(gè),師可用卡片同時(shí)演示;除了1還有哪些數(shù)可以在十位,他們分別又有幾個(gè)兩位數(shù)?像這位同學(xué)就是想到先確定十位。那么這位同學(xué)又是先確定什么的呢?或問除了先確定十位,還有其他方法嗎?)
這樣先確定十位或個(gè)位的方法好在哪里?(板書不重復(fù)、不遺漏)
(3)猜數(shù)
師:范圍越來越小了,再給你些信息
課件再給出信息:這兩個(gè)數(shù)的和為9,個(gè)位不是8。
2、組合
(1)恭喜你們,猜對(duì)了,你們考核過關(guān)!來,同桌互相握手祝賀一下。
師:同桌2人互相握手幾次?演示兩人握手,可以說我和你握手,也可以說你和我握手,但算握手的次數(shù)的話,算幾次?
這里也有三位小朋友在握手,她們是怎么握的?出示:每?jī)扇宋帐忠淮?,三人共要握幾次?/p>
要說清楚握了幾次,怎么握的,他們沒名字怎么說得清楚?你覺得剛才說的方法麻煩不麻煩?怎樣表示才能又清楚又簡(jiǎn)潔?
對(duì)啊,我們數(shù)學(xué)有自己的語言,可以用符號(hào)、圖形來表示,更快更清晰。(師標(biāo)上1、2、3)
(2)想一想,寫一寫
(3)為什么三個(gè)數(shù)排成6個(gè)兩位數(shù),握手只有三次?(課件出示)
師小結(jié):生活中很多事情需要我們有序地思考,有些與順序有關(guān),有些與順序無關(guān),比如搭配衣服。
三、鞏固提升
1、搭配衣服
該出發(fā)了,老師想打扮得漂亮些。這里有二件上衣和二條褲子,你能幫老師選一套衣服嗎?
該怎么搭配呢?有幾種不同的搭配方案?
師:你們擺出了幾種不同的搭配方法?是怎么想的?
請(qǐng)生上臺(tái)展示。
師:現(xiàn)在老師提出更高的要求,如果老師要你們把剛才的想法用連線的辦法表示出來,你們會(huì)嗎?
生在練習(xí)本上連線。
2、照相排隊(duì)
小麗、小芳、小美三人想站成一排拍照留念,她們有幾種站法?
生上臺(tái)演示。得出一共有6種不同的站法。
師:有沒有更簡(jiǎn)便的方法展示她們?nèi)说恼痉ǎ坑媚阕约合矚g的方式試試吧。(可以是文字,符號(hào),數(shù)字等)
4、路線
課件出示:從數(shù)學(xué)廣角回到家中有幾條路可走?
你會(huì)選擇那條路呢?
學(xué)生討論,匯報(bào)。
5、電話號(hào)碼
師:在數(shù)學(xué)廣角玩的開心嗎?記得有什么開心的.事要打電話讓老師也聽聽。
課件出示:老師的手機(jī)號(hào)碼:18942167()()()
最后三個(gè)數(shù)字是由1、6、8組成的,猜一猜,老師的手機(jī)號(hào)碼可能是多少呢?
四、拓展延伸
師:今天我們?cè)跀?shù)學(xué)廣角里玩,你有什么收獲?
生自由發(fā)言
師:老師課后留了一個(gè)小問題,請(qǐng)同學(xué)們討論好之后告訴我。
課件:09里面是不是任意三個(gè)不同的一位數(shù)字,都能排成6個(gè)兩位數(shù)呢?
排列組合的經(jīng)典教案 篇3
教學(xué)內(nèi)容:
簡(jiǎn)單的排列組合
教學(xué)目標(biāo):
1.使學(xué)生通過觀察、猜測(cè)、實(shí)驗(yàn)、驗(yàn)證等活動(dòng),找出簡(jiǎn)單事件的排列數(shù)或組合數(shù)。
2.培養(yǎng)學(xué)生有序地、全面地思考問題的意識(shí)和習(xí)慣。
教學(xué)過程:
1.借助操作活動(dòng)或?qū)W生易于理解的事例來幫助學(xué)生找出組合數(shù)。師生共同分析練習(xí)二十五第1題。讓學(xué)生小組討論,充分發(fā)表自己的意見。
2.利用直觀圖示幫助學(xué)生有序地、不重不漏地找出早餐搭配的組合數(shù)。
3、出示練習(xí)二十五第3題。
學(xué)生看題后,四人小組討論出有多少種求組合數(shù)的方法。
4、學(xué)生匯報(bào)。
(1)圖示表示法(兩種)。引導(dǎo)學(xué)生用畫簡(jiǎn)圖的方式來表示抽象的數(shù)學(xué)知識(shí)。
(2)其他的方法,例如聰聰或明明分別可以和每一個(gè)小朋友合影(分步時(shí),可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學(xué)時(shí)充分發(fā)揮學(xué)生的創(chuàng)造性。至于學(xué)生用哪種方法求出來,都沒關(guān)系。但要引導(dǎo)學(xué)生思考如何才能不重不漏,發(fā)展學(xué)生有序地思考問題的意識(shí)和能力。
(3)學(xué)生自己用圖示表示時(shí),可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標(biāo)上序號(hào)。實(shí)際這是發(fā)展學(xué)生用數(shù)學(xué)化的符號(hào)表示具體事件的能力的一個(gè)體現(xiàn)。
(4)如果學(xué)生用簡(jiǎn)圖的方式來表示有困難,也可以讓學(xué)生回憶一下二年級(jí)上冊(cè)的例子或借助學(xué)具卡片擺一擺。
2.“做一做”
(1)練習(xí)二十五第7題。
通過活動(dòng)的方式讓學(xué)生不重不漏地把所有取錢的情況寫出來。
(2)練習(xí)二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡(jiǎn)單的兩種方式)。在教學(xué)中也要允許有的學(xué)生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數(shù),都是應(yīng)該鼓勵(lì)的。
教學(xué)反思:
排列組合的經(jīng)典教案 篇4
教學(xué)目標(biāo):
1、使學(xué)生通過觀察、操作、實(shí)驗(yàn)等活動(dòng),找出簡(jiǎn)單事物的排列組合規(guī)律。
2、培養(yǎng)學(xué)生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識(shí)。
3、使學(xué)生感受數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法來解決實(shí)際生活中的問題。使學(xué)生在數(shù)學(xué)活動(dòng)中養(yǎng)成與人合作的良好習(xí)慣。
教學(xué)過程:
一、創(chuàng)設(shè)增境,激發(fā)興趣。
師:今天我們要去"數(shù)學(xué)廣角樂園"游玩,你們想去嗎?
二、操作探究,學(xué)習(xí)新知。
<一>組合問題
l、看一看,說一說
師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)
師引導(dǎo)思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學(xué)生說一說)
2、想一想,擺一擺
(1)引導(dǎo)討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復(fù)呢?
①學(xué)生小組討論交流,老師參與小組討論。
②學(xué)生匯報(bào)
(2)引導(dǎo)操作:小組同學(xué)互相合作,把你們?cè)O(shè)計(jì)的穿法有序的貼在展示板上。(要求:小組長(zhǎng)拿出學(xué)具衣服圖片、展示板)
①學(xué)生小組合作操作擺,教師巡視參與小組活動(dòng)。
②學(xué)生展示作品,介紹搭配方案。
③生生互相評(píng)價(jià)。
(3)師引導(dǎo)觀察:
第一種方案(按上裝搭配下裝)有幾種穿法? (4種)
第二種方案(按下裝搭配上裝)有幾種穿法? (4種)
師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來。在今后的學(xué)習(xí)和生活中,我們還會(huì)遇到許多這樣的問題,我們都可以運(yùn)用有序的思考方法來解決它們。
<二>排列問題
師:數(shù)學(xué)廣角樂園到了,不過進(jìn)門之前我們必須找到開門密碼。(課件出示課件密碼門)
密碼是由1、2 、3 組成的兩位數(shù)。
(1)小組討論擺出不同的兩位數(shù),并記下結(jié)果。
(2)學(xué)生匯報(bào)交流(老師根據(jù)學(xué)生的回答,點(diǎn)擊課件展示密碼)
(3)生生相互評(píng)價(jià)。方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);
方法二:固定十位上的數(shù)字,交換個(gè)位數(shù)字得到不同的兩位數(shù);
方法三:固定個(gè)位上的數(shù)字,交換十位數(shù)字得到不同的兩位數(shù)。
師小結(jié):三種方法雖然不同,但都能正確并有序地?cái)[出6個(gè)不同的兩位數(shù),同學(xué)們可以用自己喜歡的方法。
三、課堂實(shí)踐,鞏固新知。
1、乒乓球賽場(chǎng)次安排。
師:我們先去活動(dòng)樂園看看,這兒正好有乒乓球比賽呢。(課件出示情境圖)
(l)老師提出要求:每?jī)蓚€(gè)運(yùn)動(dòng)員之間打一場(chǎng)球賽,一共要比幾場(chǎng)?
(2)學(xué)生獨(dú)立思考。
(3)指名學(xué)生匯報(bào)規(guī)
2、路線選擇。(課件展示游玩景點(diǎn)圖)
師:我們?nèi)ス珗@看看吧。途中要經(jīng)過游戲樂園。
(1)師引導(dǎo)觀察:從活動(dòng)樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據(jù)學(xué)生的回答課件展示)
從活動(dòng)樂園到時(shí)公園到底有幾種不同的走法?
(2)學(xué)生獨(dú)立思索后小組交流 。
(3)全班同學(xué)互相交流 。
3、照像活動(dòng)。
師:我們來到公園,這兒的景色真不錯(cuò),大家照幾張像吧。
師提出要求:攝影師要求三名同學(xué)站成一排照像,每小組根據(jù)每次合影人數(shù)(雙人照或三人照)設(shè)計(jì)排列方案,由組長(zhǎng)作好活動(dòng)記錄。
(1)小組活動(dòng),老師參與小組活動(dòng) 。
(2)各小組展示記錄方案 。
(3)師生共同評(píng)價(jià) 。
4、欣賞照片。
師:在同學(xué)們照像的同時(shí),小麗一家三口人也正在照像呢,看看她們是怎樣照的。(課件展示照片集欣賞)
四、總結(jié)
今天的游玩到此結(jié)束,同學(xué)們互相握手告別好嗎?如果小組里的四個(gè)同學(xué)每?jī)扇宋找淮问?,一共要握幾次手?/p>
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。