影音先锋AⅤ天堂资源站,13小箩利洗澡无码视频APP,午夜理论片日本中文在线,最近新免费韩国日本电影

首頁 > 職業(yè)資格  > 

天天熱推薦:初中數(shù)學(xué)優(yōu)秀教案

2023-07-07   來源:萬能知識網(wǎng)

作為一位杰出的老師,就有可能用到教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W(xué)方法。那么優(yōu)秀的教案是什么樣的呢?下面是小編整理的初中數(shù)學(xué)優(yōu)秀教案,僅供參考,大家一起來看看吧。


(資料圖片)

初中數(shù)學(xué)優(yōu)秀教案1

一、教學(xué)目的:

1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;

2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.

二、重點、難點

1.教學(xué)重點:菱形的兩個判定方法.

2.教學(xué)難點:判定方法的證明方法及運用.

三、例題的意圖分析

本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算.這些題目的推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級,可以選講例3.

四、課堂引入

1.復(fù)習(xí)

(1)菱形的定義:一組鄰邊相等的平行四邊形;

(2)菱形的性質(zhì)1:菱形的四條邊都相等;

性質(zhì)2:菱形的對角線互相平分,并且每條對角線平分一組對角;

(3)運用菱形的定義進行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)

2.【問題】要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?

3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?

通過演示,容易得到:

菱形判定方法1對角線互相垂直的平行四邊形是菱形.

注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.

通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

菱形判定方法2四邊都相等的四邊形是菱形.

五、例習(xí)題分析

例1(教材P109的例3)略

例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.

求證:四邊形AFCE是菱形.

證明:∵四邊形ABCD是平行四邊形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四邊形AFCE是平行四邊形.

又EF⊥AC,

∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形).

※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.

求證:四邊形CEHF為菱形.

略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.

六、隨堂練習(xí)

1.填空:

(1)對角線互相平分的四邊形是;

(2)對角線互相垂直平分的四邊形是________;

(3)對角線相等且互相平分的四邊形是________;

(4)兩組對邊分別平行,且對角線的四邊形是菱形.

2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.

3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

七、課后練習(xí)

1.下列條件中,能判定四邊形是菱形的是

(A)兩條對角線相等(B)兩條對角線互相垂直

(C)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分

2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.

3.做一做:

設(shè)計一個由菱形組成的花邊圖案.花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.

初中數(shù)學(xué)優(yōu)秀教案2

教學(xué)目標:

(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

重點難點:

能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

教學(xué)過程:

一、試一試

1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,

2.x的值是否可以任意取?有限定范圍嗎?

3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,

對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x<10。對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函數(shù)關(guān)系式.

二、提出問題

某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?在這個問題中,可提出如下問題供學(xué)生思考并回答:

1.商品的利潤與售價、進價以及銷售量之間有什么關(guān)系?

[利潤=(售價-進價)×銷售量]

2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷

售約多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

[x的值不能任意取,其范圍是0≤x≤2]

5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0<x<10=化為:

y=-2x2+20x(0<x<10)……………………………(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D(0≤x≤2)……………………(2)

三、觀察;概括

1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

(1)函數(shù)關(guān)系式(1)和(2)的.自變量各有幾個?

(各有1個)

(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)

(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點?

(都是用自變量的二次多項式來表示的)

(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。

2.二次函數(shù)定義:形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

四、課堂練習(xí)

1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P3練習(xí)第1,2題。

五、小結(jié)

1.請敘述二次函數(shù)的定義.

2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。

六、作業(yè):略

初中數(shù)學(xué)優(yōu)秀教案3

一、教學(xué)目標:

1.知識目標:

①能準確理解絕對值的幾何意義和代數(shù)意義。

②能準確熟練地求一個有理數(shù)的絕對值。

③使學(xué)生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。

2.能力目標:

①初步培養(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。

②初步培養(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。

3.情感目標:

①通過向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。

②通過課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強他們的自信心。

二、教學(xué)重點和難點

教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。

教學(xué)難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。

三、教學(xué)方法

啟發(fā)引導(dǎo)式、討論式和談話法

四、教學(xué)過程

(一)復(fù)習(xí)提問

問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?

(二)新授

1.引入

結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。

2.數(shù)a的絕對值的意義

①幾何意義

一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.

舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)

強調(diào):表示0的點與原點的距離是0,所以|0|=0.

指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。

②代數(shù)意義

把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.

用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:

指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。

3.例題精講

例1.求8,-8的絕對值。

按教材方法講解。

例2.計算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。

解:∵|2|=2,|-2|=2

∴這個數(shù)是2或-2.

五、鞏固練習(xí)

練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.

練習(xí)二:

1.絕對值小于4的整數(shù)是____.

2.絕對值最小的數(shù)是____.

3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。

六、歸納小結(jié)

本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。

七、布置作業(yè)

教材P66習(xí)題2.4A組3、4、5.

初中數(shù)學(xué)優(yōu)秀教案4

一、教材分析

本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實驗教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

二、設(shè)計思想

本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。

八年級學(xué)生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開展教學(xué)活動,通過設(shè)計有針對性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動不但培養(yǎng)學(xué)生化簡意識,提升數(shù)學(xué)運算技能而且讓學(xué)生深刻體會到數(shù)學(xué)是解決實際問題的重要工具,增強應(yīng)用數(shù)學(xué)的意識。

三、教學(xué)目標:

(一)知識技能目標:

1、理解同類項的含義,并能辨別同類項。

2、掌握合并同類項的方法,熟練的合并同類項。

3、掌握整式加減運算的方法,熟練進行運算。

(二)過程方法目標:

1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學(xué)生觀察、歸納、探究的能力。

2、通過合并同類項、整式加減運算的練習(xí)活動,提高學(xué)生運算技能,提升運算的準確率培養(yǎng)學(xué)生化簡意識,發(fā)展學(xué)生的抽象概括能力。

3、通過研究引例、探究例1的活動,發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號感。

(三)情感價值目標:

1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識和敢于探索未知問題的精神。

2、通過學(xué)習(xí)活動培養(yǎng)學(xué)生科學(xué)、嚴謹?shù)膶W(xué)習(xí)態(tài)度。

四、教學(xué)重、難點:

合并同類項

五、教學(xué)關(guān)鍵:

同類項的概念

六、教學(xué)準備:

教師:

1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。

2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

3、設(shè)計多媒體教學(xué)課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)

學(xué)生:

1、復(fù)習(xí)有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)

2、每小組制作大小不等的兩個長方體紙盒模型。

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

推薦詞條

<蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>