影音先锋AⅤ天堂资源站,13小箩利洗澡无码视频APP,午夜理论片日本中文在线,最近新免费韩国日本电影

首頁 > 知識百科 > 

初中數學教學案例及反思

2023-01-06   來源:萬能知識網
  1. 1初中數學教學案例及反思
  2. 2初中數學教學案例及反思
  3. 3初中數學教學案例及反思

學生先獨立思考每個問題再分組討論,活動三探究任意多邊形的內角和公式,學生結合思考題進行討論并把討論后的結果進行交流,本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者引導者。


(資料圖片僅供參考)

初中數學教學案例及反思2017-09-28 10:31:57 | #1樓回目錄

初中數學教學案例及反思

——多邊形內角和

一、教材分析

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。

二、教學目標

1、知識目標:了解多邊形內角和公式。

2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

三、教學重、難點

重點:探索多邊形內角和。

難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

四、教學方法:引導發(fā)現法、討論法

五、教具、學具

教具:多媒體課件

學具:三角板、量角器

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思

師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?

活動一:探究四邊形內角和。

在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360。

方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360。

接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

活動二:探究五邊形、六邊形、十邊形的內角和。

學生先獨立思考每個問題再分組討論。

關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。

(2)學生能否采用不同的方法。

學生分組討論后進行交流(五邊形的內角和)

方法1:把五邊形分成三個三角形,3個180的和是540。

方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

師:你真聰明!做到了學以致用。

交流后,學生運用幾何畫板演示并驗證得到的方法。

得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

(二)引申思考,培養(yǎng)創(chuàng)新

師:通過前面的討論,你能知道多邊形內角和嗎?

活動三:探究任意多邊形的內角和公式。

思考:(1)多邊形內角和與三角形內角和的關系?

(2)多邊形的邊數與內角和的關系?

(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?

學生結合思考題進行討論,并把討論后的結果進行交流。

發(fā)現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。發(fā)現2:多邊形的邊數增加1,內角和增加180。

發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

得出結論:多邊形內角和公式:(n-2)·180。

(三)實際應用,優(yōu)勢互補

1、口答:(1)七邊形內角和()

(2)九邊形內角和()

(3)十邊形內角和()

2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

(四)概括存儲

學生自己歸納總結:

1、多邊形內角和公式

2、運用轉化思想解決數學問題

3、用數形結合的思想解決問題

(五)作業(yè):練習冊第93頁1、2、3

八、教學反思:

1、教的轉變

本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者

、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫

板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。

2、學的轉變

學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本

知識層

面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉變

整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的

思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,

學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解

決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,

判斷發(fā)現的價值。

初中數學教學案例及反思2017-09-28 10:32:12 | #2樓回目錄

初中數學教學案例及反思——多邊形內角和

勝利中學張淑坤

一、教材分析

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。

二、教學目標

1、知識目標:了解多邊形內角和公式。

2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

三、教學重、難點

重點:探索多邊形內角和。

難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

四、教學方法:引導發(fā)現法、討論法

五、教具、學具

教具:多媒體課件

學具:三角板、量角器

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思

師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?活動一:探究四邊形內角和。

在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360。

方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360。

接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?活動二:探究五邊形、六邊形、十邊形的內角和。

學生先獨立思考每個問題再分組討論。

關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。

(2)學生能否采用不同的方法。

學生分組討論后進行交流(五邊形的內角和)

方法1:把五邊形分成三個三角形,3個180的和是540。

方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

交流后,學生運用幾何畫板演示并驗證得到的方法。

得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

(二)引申思考,培養(yǎng)創(chuàng)新

師:通過前面的討論,你能知道多邊形內角和嗎?

活動三:探究任意多邊形的內角和公式。

思考:(1)多邊形內角和與三角形內角和的關系?

(2)多邊形的邊數與內角和的關系?

(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?

學生結合思考題進行討論,并把討論后的結果進行交流。

發(fā)現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。

發(fā)現2:多邊形的邊數增加1,內角和增加180。

發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

得出結論:多邊形內角和公式:(n-2)·180。

(三)實際應用,優(yōu)勢互補

1、口答:(1)七邊形內角和()(2)九邊形內角和()

2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

(四)概括小結:學生自己歸納總結:

(五)作業(yè):練習冊第93頁1、2、3

八、教學反思:

1、教的轉變

本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。

2、學的轉變

學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉變

整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值。

初中數學教學案例及反思2017-09-28 10:30:33 | #3樓回目錄

初中數學教學案例及反思

——多邊形內角和

一、教材分析

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊

第七章第三節(jié)多邊形內角和。

二、教學目標

1、知識目標:了解多邊形內角和公式。

2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

三、教學重、難點

重點:探索多邊形內角和。

難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

四、教學方法:引導發(fā)現法、討論法

五、教具、學具

教具:多媒體課件

學具:三角板、量角器

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思

師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?活動一:探究四邊形內角和。

在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360。方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360。

接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?活動二:探究五邊形、六邊形、十邊形的內角和。

學生先獨立思考每個問題再分組討論。

關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。

(2)學生能否采用不同的方法。

學生分組討論后進行交流(五邊形的內角和)

方法1:把五邊形分成三個三角形,3個180的和是540。

方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

師:你真聰明!做到了學以致用。

交流后,學生運用幾何畫板演示并驗證得到的方法。

得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

(二)引申思考,培養(yǎng)創(chuàng)新

師:通過前面的討論,你能知道多邊形內角和嗎?

活動三:探究任意多邊形的內角和公式。

思考:(1)多邊形內角和與三角形內角和的關系?

(2)多邊形的邊數與內角和的關系?

(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?學生結合思考題進行討論,并把討論后的結果進行交流。

發(fā)現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。

發(fā)現2:多邊形的邊數增加1,內角和增加180。

發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

得出結論:多邊形內角和公式:(n-2)·180。

(三)實際應用,優(yōu)勢互補

1、口答:(1)七邊形內角和()

(2)九邊形內角和()

(3)十邊形內角和()

2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

(四)概括存儲

學生自己歸納總結:

1、多邊形內角和公式

2、運用轉化思想解決數學問題

3、用數形結合的思想解決問題

(五)作業(yè):練習冊第93頁1、2、3

八、教學反思:

1、教的轉變

本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。

2、學的轉變

學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層

面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉變

整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的

思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解

決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值。

詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學等領域),建議您咨詢相關領域專業(yè)人士。

推薦詞條

<蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>