環(huán)球快播:初中反比例函數(shù)知識(shí)點(diǎn)總結(jié)大全
反比例函數(shù)的圖像是以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線,反比例函數(shù)圖象中每一象限的每一支曲線會(huì)無限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交。初中反比例函數(shù)知識(shí)點(diǎn)總結(jié)大全有哪些?一起來看看初中反比例函數(shù)知識(shí)點(diǎn)總結(jié)大全,歡迎查閱!
【資料圖】
反比例函數(shù)知識(shí)點(diǎn)總結(jié)
1、反比例函數(shù)的表達(dá)式
X是自變量,Y是X的函數(shù)
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的負(fù)一次方,此處X必須為一次方)
y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時(shí)比例系數(shù)為:k/n
2、函數(shù)式中自變量取值的范圍
①k≠0;②在一般的情況下,自變量x的"取值范圍可以是不等于0的任意實(shí)數(shù);③函數(shù)y的取值范圍也是任意非零實(shí)數(shù)。
解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實(shí)數(shù)
y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=kx(k為常數(shù)(k≠0),x不等于0)
3、反比例函數(shù)圖象
反比例函數(shù)的圖像屬于以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線(hyperbola),
反比例函數(shù)圖像中每一象限的每一支曲線會(huì)無限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交(K≠0)。
4、反比例函數(shù)中k的幾何意義是什么?有哪些應(yīng)用?
過反比例函數(shù)y=k/x(k≠0),圖像上一點(diǎn)P(x,y),作兩坐標(biāo)軸的垂線,兩垂足、原點(diǎn)、P點(diǎn)組成一個(gè)矩形,矩形的面積S=x的絕對(duì)值_y的絕對(duì)值=(x_y)的絕對(duì)值=|k|
研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個(gè)很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點(diǎn)P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。
所以,對(duì)雙曲線上任意一點(diǎn)作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對(duì)值。在解有關(guān)反比例函數(shù)的問題時(shí),若能靈活運(yùn)用反比例函數(shù)中k的幾何意義,會(huì)給解題帶來很多方便。
數(shù)學(xué)反比例函數(shù)知識(shí)點(diǎn)歸納
y=k/x(k≠0)的圖象叫做雙曲線.
當(dāng)k>0時(shí),雙曲線在一、三象限(在每一象限內(nèi),從左向右降);
當(dāng)k<0時(shí),雙曲線在二、四象限(在每一象限內(nèi),從左向右上升).
因此,它的增減性與一次函數(shù)相反.
以上對(duì)反比例函數(shù)知識(shí)點(diǎn)的講解,相信同學(xué)們能很好的掌握了,希望同學(xué)們能很好的學(xué)習(xí)知識(shí)點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
反比例函數(shù)性質(zhì)有哪些
1.當(dāng)k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。
2.k>0時(shí),函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時(shí),函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。定義域?yàn)閤≠0;值域?yàn)閥≠0。
3.因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。
4.在一個(gè)反比例函數(shù)圖象上任取兩點(diǎn)P,Q,過點(diǎn)P,Q分別作x軸,y軸的平行線,與坐標(biāo)軸圍成的矩形面積為S1,S2則S1=S2=|K|
5.反比例函數(shù)的圖象既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有兩條對(duì)稱軸y=xy=-x(即第一三,二四象限角平分線),對(duì)稱中心是坐標(biāo)原點(diǎn)。
6.若設(shè)正比例函數(shù)y=mx與反比例函數(shù)y=n/x交于A、B兩點(diǎn)(m、n同號(hào)),那么AB兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱。
7.設(shè)在平面內(nèi)有反比例函數(shù)y=k/x和一次函數(shù)y=mx+n,要使它們有公共交點(diǎn),則n^2+4k·m≥(不小于)0。
8.反比例函數(shù)y=k/x的漸近線:x軸與y軸。
9.反比例函數(shù)關(guān)于正比例函數(shù)y=x,y=-x軸對(duì)稱,并且關(guān)于原點(diǎn)中心對(duì)稱.
10.反比例上一點(diǎn)m向x、y分別做垂線,交于q、w,則矩形mwqo(o為原點(diǎn))的面積為|k|
11.k值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。
12.|k|越大,反比例函數(shù)的圖象離坐標(biāo)軸的距離越遠(yuǎn)。
13.反比例函數(shù)圖象是中心對(duì)稱圖形,對(duì)稱中心是原點(diǎn)
初中反比例函數(shù)知識(shí)點(diǎn)總結(jié)大全相關(guān)文章:
★ 初中數(shù)學(xué)反比例函數(shù)知識(shí)點(diǎn)
★ 反比例函數(shù)知識(shí)點(diǎn)整理
★ 數(shù)學(xué)反比例函數(shù)知識(shí)點(diǎn)
★ 反比例函數(shù)知識(shí)點(diǎn)
★ 反比例函數(shù)基礎(chǔ)知識(shí)
★ 反比例函數(shù)知識(shí)點(diǎn)
★ 各年級(jí)數(shù)學(xué)學(xué)習(xí)方法大全
★ 初中數(shù)學(xué)知識(shí)點(diǎn)口訣總結(jié)2020
★ 2020初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 初中數(shù)學(xué)知識(shí)點(diǎn)大全
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。