蝴蝶定理公式(蝴蝶定理公式推導(dǎo)過程)
本文目錄一覽:
- 1、
- 2、
- 3、
蝴蝶模型基本公式是什么?
●蝴蝶模型
蝴蝶模型,是平面圖形中常用的五個模型之一,其特點是通過邊與面積的關(guān)系來解決問題。對于初學(xué)者來說,最重要的是理解什么是蝴蝶模型并熟記它的特征,蝴蝶模型分為任意四邊形和梯形中的蝶形。
一、蝴蝶模型的相關(guān)知識
1.定義:如圖,在任意凸四邊形ABCD中,AC、BD相較于點O,形成的圖形形似蝴蝶而被稱為蝴蝶模型。其中存在的比例關(guān)系被稱為蝴蝶定理。
請點擊輸入圖片描述
2.核心:比例模型又:
請點擊輸入圖片描述
二、蝴蝶模型的原理剖析
如圖,在任意凸四邊形ABCD中,AC,BD相交于O點,則有三角形AOD與三角形AOB有相同的高,所以S△AOB:S△AOD=OB:OD,即S1:S2=OB:OD。
請點擊輸入圖片描述
三、蝴蝶模型的方法運用
蝴蝶模型解題四部曲:
第一步:觀察:圖中是否有蝴蝶模型
第二步:構(gòu)造:蝴蝶模型
第三步:假設(shè):線段長度或圖形面積
第四步:轉(zhuǎn)化:將假設(shè)的未知數(shù)轉(zhuǎn)化到已知比例中計算
圖書訂購:15307135271楊老師 13237105583劉老師
匯款快遞,一個電話,三天到家,樣書訂購全套(2-6年級),免費快遞
《奧數(shù)思維訓(xùn)練》175元/套,《沖刺名初語數(shù)外》84元/套,
歡迎培訓(xùn)學(xué)校加盟使用該教材!
匯款卡號:中國農(nóng)業(yè)銀行6228480050024427515(戶名:楊云)
中國建設(shè)銀行6227002872120232825(戶名:楊云)
支付寶:15307135271(戶名:楊云)
加盟合作:歡迎培訓(xùn)學(xué)校、一對一機構(gòu)加盟使用該教材,數(shù)學(xué)特惠加盟:2017年9月、10月數(shù)學(xué)加盟費每個年級只要3000元,提供教法、課件和導(dǎo)學(xué)案,有意者請加微信18071541068(加微信備注“加盟”,獲取加盟資料),也可以直接電話聯(lián)系13006319485楊老師。
【例1】
如圖,某公園的外輪廓是四邊形ABCD,被對角線AC、BD分成四個部分,△AOB面積為1平方千米,△BOC面積為2平方千米,△COD的面積為3平方千米,公園由陸地面積是6.92平方千米和人工湖組成,求人工湖的面積是多少平方千米?
【例2】
如圖所示,BD、CF將長方形ABCD分成4塊,△DEF的面積是4平方厘米,△CED的面積是6平方厘米。問:四邊形ABEF的面積是多少平方厘米?
小學(xué)蝴蝶定理公式
小學(xué)蝴蝶定理公式為任意四邊形中的比例關(guān)系:S1∶S2=S4∶S3或S1×S3=S2×S4,上、下部分的面積之積等于左、右部分的面積之積,蝴蝶定理為我們提供了解決不規(guī)則四邊形面積問題的途徑。
蝴蝶定理(ButterflyTheorem),是古代歐氏平面幾何中最精彩的結(jié)果之一。這個命題最早出現(xiàn)在1815年,由霍納提出證明。而“蝴蝶定理”這個名稱最早出現(xiàn)在《美國數(shù)學(xué)月刊》1944年2月號,題目的圖形像一只蝴蝶。
蝴蝶定理公式
蝴蝶定理公式:XM=MY。蝴蝶定理(ButterflyTheorem),是古代歐氏平面幾何中最精彩的結(jié)果之一。這個命題最早出現(xiàn)在1815年,由W.G.霍納提出證明。
平面幾何指按照歐幾里得的《幾何原本》構(gòu)造的幾何學(xué)。也稱歐幾里得幾何。平面幾何研究的是平面上的直線和二次曲線(即圓錐曲線,就是橢圓、雙曲線和拋物線)的幾何結(jié)構(gòu)和度量性質(zhì)(面積、長度、角度,位置關(guān)系)。平面幾何采用了公理化方法,在數(shù)學(xué)思想史上具有重要的意義。
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。